Statistical Analysis of Natural Human Motion for Animation
نویسندگان
چکیده
Generating human motion that appears natural is a long standing problem in character animation. Researchers have explored many different approaches including physics-based simulation, optimization, and data-driven methods such as motion graphs and motion interpolation. One major difficulty in applying most of these approaches is the lack of an implementable definition of what it means for motion to be natural or human-like. In this thesis, we explore two techniques to fill this gap. The first technique creates a naturalness measure for quantifying natural human motion. The second technique involves a statistical analysis of human motion to compute aggregate statistics that are needed to guide animation algorithms for human figures toward natural looking solutions. A naturalness measure should be useful in verifying that a motion editing operation has not destroyed the naturalness of a motion capture clip or that a synthetic motion transition is within the space of those seen in natural human motion. To develop such a measure, we argue that the evaluation of naturalness is not intrinsically a subjective criterion imposed by a human observer but is, instead, an objective measure that can be computed from a large set of representative motions. We base our approach on a statistical analysis of a large motion database. Using positive training data only, the system learns a set of statistical models that represent the motion of individual joints, limbs, and the whole body. Each model produces a score for the naturalness of the test motion and these scores are then combined into an aggregate score to classify the input motion as natural or unnatural. We present ROC curves of the performance of these techniques on a broad set of test sequences and compare the results to human performance in a user study. Aggregate statistics about the properties of human motion are needed to guide animation algorithms to generate natural looking motion. We compute and report a variety of statistics for joint angle range of motion, joint velocities, and dimensionality reduction using a large and representative motion capture database. We also develop new techniques for identifying motion synergies and summarizing motion in a visually intuitive way.
منابع مشابه
Interactive Virtual Humans in Real-Time Virtual Environments
In this paper, we will present an overview of existing research in the vast area of IVH systems. We will also present our ongoing work on improving the expressive capabilities of IVHs. Because of the complexity of interaction, a high level of control is required over the face and body motions of the virtual humans. In order to achieve this, current approaches try to generate face and body motio...
متن کاملLearning to Generate Understandable Animations of American Sign Language
Standardized testing has revealed that many deaf adults in the U.S. have lower levels of written English literacy; providing American Sign Language (ASL) on websites can make information and services more accessible. Unfortunately, video recordings of human signers are difficult to update when information changes, and there is no way to support just-in-time generation of web content from a quer...
متن کاملپویانمایی شخصیت کارتونی با انتقال حرکت مفصلی و مبتنی بر اسکلت موجودات دیگر
Abstract: Nowadays, the animators give life to the fancy characters by making natural movements to organs of cartoon characters. To achieve this goal, movements of living individuals can be applied into cartoon characters. In this paper, a skeletal correspondence finding based method is proposed to transfer movement of a 2D character into a new character, where these two shapes have the same st...
متن کاملModel Reduction for Human and Animal Locomotion
Complexity of existing mathematical models inhibits the analysis and the automatic animation of human and animal motion. Current techniques rely on numerical simulations of highly nonlinear differential equations in highdimensional spaces. A motion with such large-scale dynamics is difficult to control because of the sheer size of its control space. We are developing a method for constructing s...
متن کاملModel Reduction for Human and Animal Locomotion MIT 2001 - 08 Progress
Complexity of existing mathematical models inhibits the analysis and the automatic animation of human and animal motion. Current techniques rely on numerical simulations of highly nonlinear differential equations in highdimensional spaces. A motion with such large-scale dynamics is difficult to control because of the sheer size of its control space. We are developing a method for constructing s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006